Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161136, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587699

RESUMO

The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.


Assuntos
Microalgas , Fermentação , Biocombustíveis , Biomassa , Carbono
2.
Bioresour Technol ; 343: 126080, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628008

RESUMO

This case study is part of a circular bioeconomy project for a winery company aiming to integrate a microalgae-based system within the existing facilities of the winery WWTP, promoting nutrient recovery and transformation into valuable products and bioenergy. Microalgae were used for wastewater treatment, removing N-NH4+ (97%) and P-PO4-3 (93%). A pilot anaerobic reactor was used for batch anaerobic mono-digestion of secondary sludge (WAS) and for co-digestion of WAS and algal biomass. The methane yield using WAS from two different wine production seasons was 155.4 and 132.9 NL CH4 kg VS-1. Co-digestion led to the highest methane yield (225.8 NL CH4 kg VS-1). The application of the bio-wastes for fertilization was assessed through plant growth bioassays: mono- and co-digestion digestates and dry algal biomass enhanced plant biomass accumulation (growth indexes of 163%, 155% and 121% relative to those of the control - commercial amendment, respectively), demonstrating a lack of phytotoxicity.


Assuntos
Microalgas , Purificação da Água , Anaerobiose , Biocombustíveis , Reatores Biológicos , Digestão , Metano , Esgotos , Águas Residuárias , Recursos Hídricos
3.
Sci Total Environ ; 804: 150040, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798717

RESUMO

This work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed. Four and two transformation products (TPs) were generated in the biodegradation process for acetamiprid and propanil, respectively. Then, the simultaneous removal of the pesticides was assessed in an outdoor pilot photobioreactor, operated with a hydraulic residence time of 8 days. During the steady-state, high removal efficiencies were observed for propanil (99%) and acetamiprid (71%). The results from batch experiments suggest that removal is mainly caused by algal-mediated biodegradation. Acetamiprid TPs raised throughout the operational time in the photobioreactor, while no propanil TP was detected at the pilot-scale. This suggests complete mineralization of propanil or residual formation of its TPs at concentrations below the analytical method detection limit. Aiming at biomass valorization, diverse microalgae harvesting methods were investigated for biomass concentration, and the effect of residual pesticides on the biogas yield was determined by biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by the digestion performance. The results highlight the potential of microalgae-based systems to couple nutrient removal, biomass production, micropollutant biodegradation, and biofuel production.


Assuntos
Microalgas , Praguicidas , Biomassa , Fotobiorreatores , Águas Residuárias , Água
4.
Waste Manag ; 124: 254-263, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639410

RESUMO

Integration of microalgae-based systems with conventional wastewater treatment plants provides an effective alternative to waste stream management. In this work, alkaline and enzymatic pretreatments of a microalgal culture mainly constituted by Chlorella sp. and Scenedesmus sp. and cultivated in wastewater from an industrial winery wastewater treatment plant were assessed. Microalgal enzymatic pretreatments were expected to overcome algal recalcitrancy before anaerobic digestion. pH-induced flocculation at pH 10 and 11 did not enhance microalgal harvesting and solubilisation, achieving a performance similar to that of natural sedimentation. Enzymatic hydrolysis of algal biomass was carried out using three commercial enzymatic cocktails (A, B and C) at two enzymatic doses (1% and 2% (v/v)) over 3 h of exposure time at 37 °C. Since pretreatments at a 1% dose for 0.5 h and 2% dose for 2 h achieved higher solubilisation, they were selected to evaluate the influence of the pretreatment on microalgal anaerobic digestibility. Biochemical methane potential tests showed that the pretreatments increased the methane production of the raw algal biomass 3.6- to 5.3-fold. The methane yield was 9-27% higher at the lower enzyme dose. Hence, microalgae pretreated with enzymes B and C at a 1% dose were co-digested with waste activated sludge (WAS). Even when the enzyme increased the methane yield of the inoculum and the WAS, the methane yield of the raw microalgae and WAS mixture was not significantly different from that obtained when algae were enzymatically pretreated. Nonetheless, co-digestion may achieve the goals of a waste recycled bio-circular economy.


Assuntos
Chlorella , Microalgas , Anaerobiose , Biocombustíveis , Biomassa , Digestão , Metano , Esgotos , Águas Residuárias
5.
Sci Total Environ ; 754: 142114, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911153

RESUMO

Intensive and extensive use of pesticides has contributed to their wide distribution in soil, air, and water. Due to their detrimental effects on non-target organisms, different technologies have been considered for their removal. In this work, three hydrophobic pesticide active compounds, namely, chlorpyrifos, cypermethrin, and oxadiazon, were selected to study the potential for their removal from aqueous media by a microalgae consortium. An abiotic and a killed control (thermally inactivated dead microalgae biomass) were employed to clarify their removal pathways, and pesticide content was quantified in liquid and biomass phases for 7 days. At the final time, total degradation (biodegradation plus photodegradation) contributed to the removal of 55% of oxadiazon, 35% of chlorpyrifos, and 14% of cypermethrin. Furthermore, more than 60% of chlorpyrifos and cypermethrin were removed by sorption onto microalgae biomass. Overall, the three pesticides showed high removal from the liquid phase. O,O-diethyl thiophosphate was identified in the liquid phase as a transformation product of chlorpyrifos formed by microalgae degradation. Phycoremediation was coupled with anaerobic degradation of the microalgae biomass containing the retained pesticides by sorption through biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by methane production yields. The removal efficiency of the pesticides in the digestate was as follows: chlorpyrifos > cypermethrin > oxadiazon. These results highlight the potential of low-cost algal-based systems for the treatment of wastewater or effluents from agrochemical industries. The integration of wastewater treatment with biogas production through anaerobic digestion is a biorefinery approach that facilitates the economic feasibility of the process.


Assuntos
Microalgas , Praguicidas , Anaerobiose , Biodegradação Ambiental , Biocombustíveis , Biomassa , Metano , Águas Residuárias
6.
Bioresour Technol ; 283: 10-17, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30897388

RESUMO

The Anaerobic Digestion and Composting Plant of the Vallès Oriental Waste Treatment Centre processes source-selected organic fraction of municipal solid wastes generated in its surrounding area. To promote Circular Economy between Municipal Solid Waste and industrial waste management systems, the Treatment Centre is looking for complementary wastes to be valorised through co-digestion with its main substrate. The study includes waste characterization and a complete treatment cost analysis, that jointly with the biogas potential and the mass balance of the Plant allows to calculate the price of each waste to be treated in the Plant. Up to 13 industrial wastes have been characterised for its biogas potential and its treatment cost calculated. Treatment prices ranged between 83 and 51 € t-1.


Assuntos
Biocombustíveis , Resíduos Sólidos , Anaerobiose , Resíduos Industriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...